Synthesis of Acid Hydrolysis Lignin-g-Poly-(Acrylic Acid) Hydrogel Superabsorbent Composites and Adsorption of Lead Ions

Yajie Sun, Yanli Ma, Guizhen Fang, Shujun Li, Yujie Fu


A series of acid hydrolysis lignin-g-poly-(acrylic acid) (AHL-g-PAA) composites was prepared by grafting acid hydrolysis lignin on the surface of the polyacrylic acid network. The results of structure analysis revealed that AHL-g-PAA had been grafted. The surface morphologies of the hydrogels were improved, as shown by scanning electron microscopy observation. The AHL-g-PAA hydrogel had high water absorption and it possessed sensitivity to external pH stimulus. This study also revealed that the adsorption capacity of AHL-g-PAA was 235 mg/g for Pb(II) ions. The adsorption kinetics data could be described by the pseudo-second-order model, and the adsorption isotherm agrees well with the Langmuir model.


Acid hydrolysis lignin; Lead adsorption; Polyacrylic acid; Biodegradable materials; Gels; Grafting; Copolymers; Crosslinking

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126