Enzymatic Saccharification of Acid/Alkali Pre-treated, Mill-run, and Depithed Sugarcane Bagasse

Thandeka Mkhize, Lethiwe Debra Mthembu, Rishi Gupta, Amandeep Kaur, Ramesh Chander Kuhad, Prashant Reddy, Nirmala Deenadayalu

Abstract


In South Africa, approximately 3 × 106 tons of sugarcane bagasse is produced annually by 14 factories located on the north coast of KwaZulu-Natal. It is one of the most readily available lignocellulosic materials for ethanol production through enzymatic saccharification and hydrolysis. Pre-treatment enables disruption of the naturally resistant structure of lignocellulosic biomass to make the cellulose accessible to hydrolysis for conversion to biofuels. In this study, pre-treatment of depithed bagasse and mill-run bagasse was done using acid (3% H2SO4 v/v) followed by alkali (4% NaOH w/v), and the pre-treated solid was subjected to enzymatic hydrolysis. The effects of different conditions for enzymatic saccharification such as enzyme dose, reaction time, and amount of surfactant were studied in detail. The pre-treated substrate (10% w/v) when hydrolysed using 30 FPU/gds/40 FPU/g dry substrate (gds) with 0.4% (v/v) Tween® 80 for 20 h resulted in 608 mg/gds (depithed bagasse) and 604 mg/gds (mill-run bagasse) total reducing sugars.

Keywords


Bagasse; Pre-treatment; Total reducing sugars; Saccharification

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126