Effect of Coal Ash on the Steam Reforming of Simulated Bio-oil for Hydrogen Production over Ni/γ-Al2O3

Fan Zhang, Shurong Wang, Junhao Chen, Yurong Wang, Bin Ru, Lingjun Zhu


An improved system for hydrogen production by the steam reforming of simulated bio-oil was developed. The coal ash was packed in front of nickel-based catalysts, acting as a guard catalyst. The model compounds passed through coal ash and were preliminarily reformed to smaller molecular intermediates containing more CO and CH4, which were then further reformed over the following nickel-reforming catalyst. The improved reaction system succeeded in effectively converting the complex simulated bio-oil into hydrogen and exhibited high activity. For 15 wt.% Ni/γ-Al2O3 catalyst with coal ash packing, the catalyst lifetime was extended to 8 h, with simulated bio-oil almost completely converted into hydrogen. In addition, coke deposition was suppressed.


Hydrogen; Bio-oil; Steam reforming; Coal ash; Guard

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126