Structure, Composition, and Thermal Properties of Cellulose Fibers from Pueraria lobata Treated with a Combination of Steam Explosion and Laccase Mediator System

Minghua Li, Guangting Han, Yan Song, Wei Jiang, Yuanming Zhang

Abstract


Cellulosic fibers from the bast of Pueraria lobata (P. lobata) vine were separated using a “green” and efficient method that combined steam explosion (SE) and a laccase mediator system (LMS). The chemical components, structure, and thermal alterations in the fibers were evaluated. The SE performed at 180 °C for 10 min did not change the chemical composition of P. lobata; however, SE did alter the fiber structure and rendered its surface more accessible to the laccase enzyme. Treated and untreated samples were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), and chemical methods. The cellulose content of the processed fibers was approximately 68.2%, and the lignin content was 11.8%, which was much lower than the 22.98% lignin content of the raw material. The cellulose fibers exhibited higher cellulose crystallinity and thermal stability compared with the untreated samples. This combined treatment approach may be useful for the isolation of cellulose fibers for composites, textiles, and other industrial applications.

Keywords


Pueraria lobata; Steam explosion; Cellulose fibers; Laccase

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126