Mat Compression Measurements During Low-Density Particleboard Manufacturing

Piotr Boruszewski, Piotr Borysiuk, Mariusz Mamiński, Joanna Czechowska


This study regards the effect of technological aspects on mat compression during the manufacturing of low-density particleboards made of two low density species - i.e. poplar and pine. Using these materials, three-layer low-density particleboards (500 kg/m3) were prepared. Three series were manufactured: (1) neat pine, (2) poplar-pine (face layer and core layer, respectively) and (3) neat poplar boards. Measurements of real-time variations in mat core temperature, pressure, and mat thickness allowed for the analysis of the mat compaction. Selected mechanical properties (modulus of rupture, modulus of elasticity, and internal bonding) of the manufactured particleboards were determined. Raw material of lower density used for particleboard manufacturing required either prolonged pressing time or more intense heat transfer into the mat core. The highest strength values were obtained for the poplar-pine particleboards.


Particleboard; Low density; Poplar; Pine; Pressing process; Raw material

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126