Physical and Mechanical Properties of Walnut Shell Flour-Filled Thermoplastic Starch Composites

Narjes Abdolhosseini Sarsari, Shademan Pourmousa, Ajang Tajdini

Abstract


The goal of this work was to evaluate the technical feasibility of walnut shell flour (WSF) as substitute for wood in walnut shell flour/thermoplastic starch (WSF/TPS) composites. The effects of walnut shell flour (WSF), thermoplastic starch (TPS), and nanoclay on the physical and mechanical properties of WSF/TPS composites were investigated. The composite samples were formed in a Colin extruder with four-chamber heat with temperatures. Then, test samples were made using injection molding. The addition of up to 40% WSF greatly improved the tensile strength, flexural strength, and elasticity modulus of the composite. Also, the composites made with higher WSF contents had increased thickness swelling and water absorption. The incorporation of nanoclay (0% to 5%), greatly improved the tensile properties. Soil burial degradation experiments showed that biodegradation was accelerated by the increase of starch in the composite mixtures. The study showed that WSF can be successfully utilized for the manufacture of composites with useful physical and mechanical properties.

Keywords


Nanocomposites; Walnut shell flour; Thermoplastic corn starch; Nanoclay; Physical properties; Mechanical properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126