Preparation and Properties of Foamed Cellulose-Polymer Microsphere Hybrid Materials for Sound Absorption

Fan Cheng, Penbo Lu, Pengfei Ren, Jinbo Chen, Yanghao Ou, Meiyan Lin, Detao Liu

Abstract


Sustainability and eco-efficiency are presently directing the development of the next generation of acoustic materials. In this work, foamed cellulose-polymer microsphere (PM) hybrid materials, having sound-absorbing capability, were prepared by incorporating the PMs into cellulose fibers by dehydration and foaming processes. The evolution in morphology of PMs during foaming process was investigated for different heating temperatures. The beating process disintegrated the microscopic cellulose fiber into the smaller fibers, which connected the PMs by a unique fibrous network. The influences of foaming temperature, PM content, and total areal density on the sound absorbing property of composites were studied. The results showed that incorporating the acoustic unit of elastic PMs into the porous cellulose fiber-based network significantly improved the sound absorbing ability of the composites. The sound-absorbing hybrid materials appear to be a promising alternative to non-degradable organic or inorganic acoustic composites, being economical, simple, and eco-friendly.

Keywords


Cellulose fibers; Acoustic materials; Foaming process; Beating process; Sound absorption coefficient

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126