Investigation of Co-Gasification Reactivity of Torrefied Jatropha Seed Cake with Illinois #6 Coal Char

Yuhong Qin, Zibing Zhao, Tomasz Wiltowski, Mashal Aloqaili, Yanna Liang


Coal and torrefied biomass co-gasification is one of the potential solutions to the reduction of greenhouse gas emissions. For this study, Jatropha seed cake was torrefied at a temperature range of 200 to 300 °C under a nitrogen atmosphere. The torrefied material was then co-pyrolyzed and isothermally co-gasified at 900 °C with two Illinois (IL) #6 coal chars in a fixed-bed reactor connected to an on-line gas chromatography analyzer. Carbon dioxide and carbon monoxide were the primary gas products from the torrefaction process. Kinetic models, such as the shrinking core model, the homogenous model, and the catalysis-controlled model, were used to analyze the gasification mechanism. The results showed that the shrinking core and homogenous models provided the best fits for the gasification reaction data. Jatropha seed cake torrefied at 260 and 280 °C exhibited the best reaction activity with the IL #6 coal chars. The reactivities of coal char with torrefied biomass obtained at 200 and 300 °C were lower in comparison with the others.


Jatropha seed cake; Torrefaction; IL #6 coal char; Co-gasification; Reactivity

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126