Effects of Ozone and Nanocellulose Treatments on the Strength and Optical Properties of Paper Made from Chemical Mechanical Pulp

Jafar Ebrahimpour Kasmani


This effects of ozone and nanocellulose treatments were studied relative to the optical and strength features of chemical mechanical pulp (CMP) papers. An ozone treatment was performed at room temperature, and then nanocellulose was added. Sixty-gram handmade papers were made, and their physical, mechanical, and morphological properties were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). With the ozone treatment, changes in the optical features were not significant at the 95% level; however, the addition of nanocellulose led to significant changes: the tensile strength, burst strength, air resistance, opacity, and brightness increased by 14.1%, 15.9%, 34.8%, 2.8%, and 3.2%, respectively, in comparison with the control sample. The enhancement with nanocellulose reduced the tear strength, coarseness, and yellowness by 15.7%, 12.9%, and 7.6%, respectively, compared with the control sample. The crystallinity of neat nanocellulose was 65.59%, while the crystallinities with the use of 5% to 10% nanocellulose were 72.41% and 62.26%, respectively. The SEM results indicated that using a 10% nanocellulose treatment led to the reduction of the CMP paper’s porous character.


Ozone treatment; Nanocellulose; Mechanical features; Optical characteristics; X-ray diffraction; SEM

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126