Moisture Effects on the Mechanical Behavior of Fir Wood Flour/Glass Reinforced Epoxy Composite

Camelia Cerbu, Camelia Cosereanu


Fir wood flour may be used as filler in glass reinforced composites due to the lower content of tannins in comparison with oak wood flour (Cerbu et al. 2010). This work focuses on the behavior of E-glass / fir wood flour / epoxy hybrid composites in mechanical tests (three-point bending tests, and Charpy impact tests) after immersion in water for 1177, 3048, and 6572 hours. Alternating layers were reinforced either with glass fabric or with fir wood flour. After 3048 hours of immersion, the flexural properties decreased: the modulus of elasticity (MOE) in bending and maximum flexural stress σ decreased by 13.16% and 37.54% respectively, with respect to the values recorded in the case of the dried specimens. The properties recovered a little after saturation because they increased after 6572 hours of immersion: MOE was greater (4.36%), while maximum flexural stress was greater (6.78%) with respect to the values corresponding to the specimens tested after 3048 hours of immersion. In the Charpy test, the impact strength K was measured. The damage (cracks developed at matrix-glass interface) caused by water absorption is discussed in order to explain the degradation of the mechanical properties. The adding of the wood flour led to the increasing of the modulus of rigidity EI in bending and it is proved by comparing with the results obtained in case of glass / epoxy composite without wood flour. Components for outdoor furniture (gardens) could be an application of the hybrid composite analyzed in this paper.


Hybrid; Composites; Wood flour; Glass fibers; Moisture degradation; Bending; Impact

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126