Characterization and Properties of Cellulose Nanofiber/ Polyaniline Film Composites Synthesized through in Situ Polymerization

Wen He, Jiaxi Tian, Jiping Li, Hui Jin, Yanjun Li


Cellulose nanofiber/polyaniline (CNF/PANI) composites films were synthesized through in situ polymerization of aniline in a nanocellulose suspension that was isolated from bamboo (Phyllostachys nidularia Munro). The PANI contents were 5 wt.%, 15 wt.%, or 30 wt.%. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the CNF nanofibril surfaces were uniformly coated by PANI particles. Moreover, Fourier transform infrared (FTIR) spectroscopy analysis indicated the formation of hydrogen bonds between the amine groups of aniline and the hydroxyl groups of cellulose. X-ray diffraction (XRD) analysis demonstrated that the cellulose I structure of CNF in the composites did not change, while the crystallinity of CNF was affected. Thermogravimetric analysis (TGA) showed that the thermal stability of CNF was increased due to the addition of PANI. Meanwhile, the obtained electrical conductivity and mechanical properties of the CNF/PANI composites indicated that the composites could be used potentially in anti-static materials, for shielding of electromagnetic radiation, and in biological sensors.


Phyllostachys nidularia Munro; Cellulose nanofibers; Polyaniline; Thermal stability; Electrical conductivity; Mechanical properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126