Comparison of Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) Models in Simulating Polygalacturonase Production

Sibel Uzuner, Deniz Cekmecelioglu

Abstract


The artificial neural network (ANN) method was used in comparison with the adaptive neuro-fuzzy inference system (ANFIS) to describe polygalacturonase (PG) production by Bacillus subtilis in submerged fermentation. ANN was evaluated with five neurons in the input layer, one hidden layer with 7 neurons, and one neuron in the output layer. Five fermentation variables (pH, temperature, time, yeast extract concentration, and K2HPO4 concentration) served as the input of the ANN and ANFIS models, and the polygalacturonase activity was the output. Coefficient of determination (R2) and root mean square values (RMSE) were calculated as 0.978 and 0.060, respectively for the best ANFIS structure obtained in this study. The R2 and RMSE values were computed as 1.00 and 0.030, respectively for the best ANN model. The results showed that the ANN and ANFIS models performed similarly in terms of prediction accuracy.

Keywords


Back-propagation network; Artificial intelligence; Polygalacturonase; Adaptive neuro-fuzzy inference system

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126