Fatigue and Fracture Properties of Laminated Bamboo Strips from Gigantochloa scortechinii Polyester Composites

Aidy Ali, Kannan Rassiah, Faiz Othman, How Pueh Lee, Tong Earn Tay, Muhammad Shauqi Hazin, Megat Muhammad Hamdan Megat Ahmad


The fatigue and fracture properties of bamboo fiber composites made of woven layers were investigated. This study utilized a specific type of bamboo species named Gigantochloa scortechinii (Buluh Semantan). In these experiments, unsaturated polyester (UP) and bamboo fiber (BF) strips were prepared through a hand lay-up technique using 3-mm thick aluminum mould. The composite bamboo strips had a thickness of 1.5 mm. The strips were woven together to make a single layer. The layer was then laminated into several thicknesses. The specimens were then characterized using fatigue and fracture tests. A fatigue limit of 30 MPa and fracture toughness of 5 to 8 MPa √m were obtained. These findings suggest that the bamboo strips, based on unsaturated polyester, provided relatively good fatigue and fracture properties and a good method of reinforcing fibers to combat fatigue and fracture failures.


Unsaturated polyester; Bamboo strip; Gigantochloa scortechinii; Fatigue and fracture laminated composites; Mechanical testing

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126