Modeling of Sulfite Concentration, Particle Size, and Reaction Time in Lignosulfonate Production from Barley Straw Using Response Surface Methodology and Artificial Neural Network

Maria Guadalupe Serna-Diaz, Ainhoa Arana-Cuenca, Joselito Medina-Marin, Juan Carlos Seck-Tuoh-Mora, Yuridia Mercado-Flores, Angélica Jiménez-González, Alejandro Tellez-Jurado


Barley straw is a lignocellulosic biomass that can be used to obtain value-added products for industrial applications. Barley straw hydrolysis with sodium sulfite facilitates the production of lignosulfonates. In this work, the delignification process of barley straw by solubilizing lignin through sulfite method was studied. Response surface methodology and artificial neural network were used to develop predictive models for simulation and optimization of delignification process of barley straw. The influence of parameters over sulfite concentration (1.0 to 10.0%), particle size (8 to 20), and reaction time (30 to 90 min) on total percentage of solubilized material was investigated through a three level three factor (33) full factorial central composite design with the help of Matlab® ver. 8.1. The results show that particle size and sulfite concentration have the most significant effect on delignification process. Both techniques, response surface methodology and artificial neural networks, predicted the lignosulfonate yield adequately, although the artificial neural network technique produced a better fit (R2 = 0.9825) against the response surface methodology (R2 = 0.9290). Based on these findings, this study can be used as a guide to forecast the potential production of lignosulfonates from barley straw using different experimental conditions.


Delignification; Straw; Response surface methodology; Artificial neural networks

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126