Optimization of Wood Welding Parameters for Australian Hardwood Species

Benoit Belleville, Siham Amirou, Antonio Pizzi, Barbara Ozarska


Optimal linear wood welding parameters along the end-grain-to-end-grain faces were determined for Eucalyptus saligna, Eucalyptus pilularis, and Corymbia maculata. Joints made using Eucalyptus saligna showed a significant interaction between welding time (WT), amplitude (WA), and pressure (WP). A preheating phase of 3 s at 0.4 MPa WP and 0.75 mm WA coupled with a WT of 2 s at 2.0 MPa WP and 1.5 mm WA provided the best shear strength results of 5.1 MPa. Joints made using Eucalyptus pilularis and Corymbia maculata snapped once the holding pressure was removed, suggesting that end-grain-to-end-grain welded fibers cannot withstand the thermal stresses generated when the surface to be welded is too small (e.g., 13.5 cm2). However, grain orientation had a significant effect on the weld mechanical properties, as very strong edge-grain-to-edge-grain joints were produced with Eucalyptus pilularis and Corymbia maculata (9.5 and 6.2 MPa, respectively). The joints made of Eucalyptus saligna also showed significant improvement (7.3 MPa). Energy efficient combinations were usually those involving low WA and short WT, as WP had a marginal effect on energy consumption during the welding process.


Linear wood welding; Eucalyptus saligna; Eucalyptus pilularis; Corymbia maculata; End-grain butt joint; Edge-grain-to-edge-grain faces joints

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126