Microstructure Properties and Cellulase Hydrolysis Efficiency of Hybrid Pennisetum with [Amim]Cl Pretreatment

Shengdan Wang, Jiachuan Chen, Guihua Yang, Kefu Chen, Rendang Yang, Jinsong Zeng

Abstract


The complex microstructure of lignocellulosic biomass restricts its conversion into bio-ethanol. In this study, the effects of an ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([Amim]Cl) pretreatment on the microstructure properties and cellulase hydrolysis efficiency of hybrid Pennisetum (P. americanum × P. purpureum, lignocellulosic biomass) were investigated. After the [Amim]Cl pretreatment, the bonds of lignin-carbohydrate complex (LCC) and C=O in xylan were destroyed and the content of inter-molecular H-bonds O(6)H…O(3’) decreased by 47.2%, while the content of intra-molecular H-bonds of O(2)H…O(6) and O(3)H…O(5) increased by 9.5% and 47.0%, respectively. The crystallinity and the crystallite size decreased by 20.8% and 42.22%, respectively, and the cellulose crystalline structure changed from cellulose crystalline I to cellulose crystalline II. The specific surface area increased from 0.15 to 10.11 m2/g after the [Amim]Cl pretreatment. The glucose recovery increased by 10.3 times after being pretreated with [Amim]Cl, compared with the unpretreated sample.

Keywords


Hybrid Pennisetum; Microstructure; Pretreatment; [Amim]Cl; Enzymatic hydrolysis

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126