Preparation and in vitro Release Mechanisms of Modified Pectin Matrix Tablets for Colon-Targeted Drug Delivery

Chen Li, Jian-Bin Li, Cai-Yu Lei, Pei-Hua Liu


To deliver bioactive components to the colon, an oral, colon-targeted, microparticle delivery system was developed based on pectin. Pectin was modified by mechanical activation, resulting in controllable release properties, as well as dramatic decreases in solubility. Mechanically activated pectins (MAP) were characterized by Fourier transformed infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H-NMR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The FTIR and 1H-NMR analyses revealed that after mechanical activation, the hydrogen bonds between pectin molecules were broken, and intermolecular crosslinking was decreased. The DSC analysis indicated that the thermal stability of pectin was decreased by mechanical activation. The SEM revealed that MAP particles were smaller, more uniform, and had smoother surfaces than unmodified pectin. An in vitro release assay and the study of drug release kinetics demonstrated that bovine serum albumin (BSA) release from MAP-containing matrix tablets was controllable. The results demonstrated that at a suitable pectin content and hydrophobicity level, matrix tablets prepared with MAP can exhibit good colon-targeted drug release.


Pectin; Matrix tablet; Colon; Mechanical activation; Releasing property

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126