Green Synthesis of Silver Nanoparticles with Glucose for Conductivity Enhancement of Conductive Ink

Qifeng Chen, Guhong Liu, Guangxue Chen, Ting Mi, Jinglei Tai

Abstract


This work reported a green method of synthesizing silver nanoparticles (AgNPs) with glucose acting as reducing agents to improve the conductivity of conductive ink. Silver nitrate, glucose, and polyvinylpyrrolidone (PVP), were used as silver precursor, reducing agent, and capping agent, respectively. The optimal condition of synthesizing AgNPs was obtained by varying the reactant ratio and temperature. The AgNPs were characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-Vis), and scanning electron microscope (SEM). The obtained AgNPs with diameters of 80 to 100 nm were almost spherical and they were redispersed well in polyurethane acrylate (PUA). Compared with traditional hydrazine hydrate, the prepared AgNPs were better with respect to uniform size, dispersion, stability, and the absence residual solvent. After UV sintering, the conductivity (2.3×105 S/m) and mechanical properties of prepared conductive ink were good. Therefore, using glucose as a reducing agent to prepare AgNPs conductive ink is feasible and noteworthy because it is an extremely common material.

Keywords


Printed electronics; Nanometer silver; Glucose; Conductive ink

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126