Characterization of Value-Added Non-Carbohydrate Compounds Solubilized during Acidic Hot Water Flowthrough Pretreatment of Poplar Wood

Lishi Yan, Ruoshui Ma, Quan Bu, Liangzhi Li, Xiao Zhou, Yiwen Xu, Cuiying Hu


Acidic hot water flowthrough pretreatment (AHWF) is an attractive approach primarily because of its high efficiency for sugar recovery. However, a significant portion of carbon content in the solubilized fractions from lignin depolymerization and monosugar degradation has been studied to a lesser degree. Herein, we investigated the solubilized non-carbohydrate products from a series of flowthrough pretreatments of poplar wood by water-only or very dilute acid (0.05% to 0.1% w/w, H2SO4) at different temperatures (220 to 280 °C) and flow rates (10 to 62.5 mL/min). Results revealed that tailoring reaction parameters (temperature) and operational parameters of reactor (flow rate) without adding expensive catalysts can selectively produce specific non-carbohydrate compounds. Up to 50.9% selectivity of vanillin and 45.0% selectivity of syringaldehyde were obtained at 240 °C for water-only treatment with flow rates of 25 mL/min and 62.5 mL/min, respectively. Lower temperature (e.g., 220 °C) was favorable for the formation of coniferyl alcohol, with the highest selectivity of 36.2%. Higher temperature (e.g., 280 °C) or lower flow rate (e.g., 10 mL/min) led to the formation of varied other aromatic compounds and HMF. Adding very dilute acid (0.05% to 0.1% w/w, H2SO4) into the water-only system considerably enhanced the formation of HMF with up to 66.7% selectivity.


Hot water; Flowthrough; Non-carbohydrate; Lignin; Reaction parameter

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126