Transcriptomic Profile of Lignocellulose Degradation from Trametes versicolor on Poplar Wood

Liping Zhang, Zhang-Xun Wang, Yulong Wang, Bo Huang


The Trametes versicolor genome is predicted to encode many enzymes that effectively degrade lignin, making it a potentially useful tool for biopulping. However, the wood degradation mechanism of T. versicolor is not clear. To identify the enzymes that contribute to lignocellulose degradation, changes in the T. versicolor transcriptome during growth on poplar wood, relative to growth on glucose medium, were evaluated. Eight hundred and fifty-three genes were differentially expressed, with 360 genes up-regulated and 493 genes were down-regulated on poplar wood. Notably, most genes involved in lignin degradation were up-regulated, including eight lignin peroxidase (LiP) genes. Genes encoding cellulose and hemicellulose degrading-enzymes were mostly down-regulated, including six endo-β-1,4-glucanase genes and three cellobiohydrolase I genes. These results characterized transcriptomic changes related to lignocellulose degradation. This information could be used to develop T. versicolor as a tool to improve the efficiency of lignin degradation or to provide a theoretical foundation for a new paper pulp manufacturing process.


Trametes versicolor; Transcriptome; Lignin degradation; Cellulose; Hemicellulose degradation; Poplar

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126