Multiscale Modelling of Moso Bamboo Oriented Strand Board

Patrick Gerard Dixon, Sardar Malek, Kate E. Semple, Polo K. Zhang, Gregory D. Smith, Lorna J. Gibson

Abstract


The modulus of elasticity (MOE) of three-layer moso bamboo (Phyllostachys pubescens Mazel) Oriented Strand Board (OSB) was modelled using a multiscale approach proposed for wood OSB. The modelling approach for wood OSB was adapted to bamboo OSB by accounting for the different structures of wood and bamboo tissue. The MOE of moso bamboo OSB was measured previously in bending; the strands in the surface layer had a preferred orientation and were either from the internode region of the culm or contained node tissue. The model for loading parallel to the preferred orientation of the surface strands gives a good description of the measured values of MOE for boards with internode surface strands (8.6 GPa modelled compared to 8.1 GPa previously measured), but overpredicts that for boards with surface strands containing nodes (8.8 GPa modelled compared to 6.7 previously measured). The model for loading perpendicular to the preferred orientation of the surface strands gives a good description of the MOE data if the core layer moduli are estimated using compliance averaging, for specimens with and without nodes (1.5 GPa modelled compared to 1.5 GPa previously measured).

Keywords


Bamboo; Oriented strand board; Multiscale modelling

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126