The Effect of Laccase Pretreatment Conditions on the Mechanical Properties of Binderless Fiberboards with Wheat Straw

Zexun Yang, Wei Song, Yang Cao, Cuicui Wang, Xiaoxia Hu, Yang Yang, Shuangbao Zhang


Self-bonding technology is potentially an effective solution to overcome formaldehyde emissions, which pose health and environmental concerns. Laccases can activate the fiber surface during the binderless fiberboard manufacturing process. This paper adopted wheat straw fibers (WSF) as the main raw material. The purpose of this study was to examine the effects of laccase pretreatment conditions on the mechanical properties of binderless fiberboards produced from WSF. For the improvement of mechanical properties, bamboo fibers (BF) were added as a reinforcing material. In addition, differences in the effects of two processes for adding laccase on the mechanical properties were monitored. As a result, binderless fiberboards were successfully manufactured from laccase-treated WSF. The results showed that the optimized pretreatment conditions were determined to be a laccase dosage of 40 U per gram absolute dry fiber (U/g), a treatment time of 120 min, a treatment temperature of 50 °C, and a proportion of BF of 20%. The mechanical properties of the binderless fiberboards prepared using a water bath were superior to spraying under the same conditions.


Laccase; Self-bonding; Wheat straw fibers; Bamboo fibers; Mechanical properties; Spraying; Water bath; Fiberboards

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126