Development of Physical Pretreatment Method for Wood Fire Retardant Impregnation

Hee-Jun Park, Ming-Yu Wen, Chun-Won Kang, Yao-Xing Sun

Abstract


To achieve a deeper and more uniform impregnation of water-soluble phosphorous-based fire retardants (WPFRs), in this work several physical pretreatment methods were developed including kerfing, boring, and the combination of both for structural square-wood posts in wooden buildings. Research was performed on three wood species, sugi (Cryptomeria japonica), larch (Larix olgensis), and Douglas fir (Pseudotsuga menziesii Franco), which are generally recognized as refractory wood species. The effects of pretreatment method on chemical uptake, chemical penetration, and mechanical properties were evaluated. The methods were compared with the incising method, a traditional method used for wood preservation. The results indicated that the pretreatments effectively increased the chemical uptake and penetration, especially in larch wood. Although the traditional incising method also increased the chemical uptake, it decreased the modulus of rupture (MOR) and compressive strength. The boring and combined method with a boring diameter less than 12 mm are recommended for WPFR wood impregnation.

Keywords


Fire retardant impregnation; Physical treatment method; Mechanical property

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126