Investigation of Nanofibrillated Cellulose for Hydrophobic Packaging Material: Examining Alternatives to Solvent Exchange and Lyophilization

Gareth Christian Birkett, Steven Sicoli, Laszlo Horvath, Johan Foster, Young-Teck Kim, Scott Renneckar, Barry Goodell


A bio-based polyurethane and a thermosetting acrylic were tested in conjunction with nano-fibrillated cellulose and conventional kraft fiber to evaluate their use as a bio-derived, biodegradable packaging foam. Foams were evaluated for their density, water uptake, and compressive creep behavior. Bio-based urethane had a mean density of 68 kg/m3, mean water uptake of 4% in 24 h, and exceeded the 10% limit on compressive strain when tested at 71 °C and 22 °C, but remained below the limit when tested at -54 °C. The thermosetting acrylic had a mean density of 128 kg/m3, mean water uptake of 337% in 24 h, and showed less than 10% compressive creep at all three temperature conditions. The bio-derived urethane was able to incorporate 4% cellulose by mass, and the thermosetting acrylic was able to incorporate 48% cellulose by mass. In a 12-week test of biodegradation under fungal attack by Gloeophyllum trabeum and Rhodonia placenta, the urethane foam had < 3% mass loss and the acrylic foam had < 1% mass loss. The acrylic foams showed potential for durable packaging, particularly if they could be combined with a surface sealant that could be ruptured at the end of service life to promote degradation of the foam.


Nanofibrillated cellulose; Nanocellulose; Biodegradable; Packaging; Foam; Polyurethane

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126