Optimization of Pilot Scale Mechanical Disk Refining for Improvements in Enzymatic Digestibility of Pretreated Hardwood Lignocellulosics

Brandon W. Jones, Richard Venditti, Sunkyu Park, Hasan Jameel

Abstract


Mechanical refining has potential application for overcoming lignocellulosic biomass recalcitrance to enzyme hydrolysis and improving biomass digestibility. This study highlighted the ability for a pilot scale disc refiner to improve the total carbohydrate conversion to sugars from 39% (unrefined hardwood sodium carbonate biomass) to 90% (0.13 mm gap, 20% consistency, ambient temperature) by optimizing the refining variables. The different biomass properties that changed with refining indicated the expected increase in sugar conversion. Controlling the refining parameters to narrower gaps and higher consistencies increased the resulting refined biomass hydrolysis. Positive correlations that increases in net specific energy (NSE) input and refining intensity (SEL) improved the enzymatic hydrolysis. In some severe cases, over-refining occurred when smaller gaps, higher consistencies, and more energy input reached a point of diminished return. The energy input in these scenarios, however, was much greater than realistically feasible for industrial application. Although well-established in the pulp and paper industry, gaps in understanding the fundamentals of refining remain. The observations and results herein provide the justification and opportunity for further mechanical refining optimization to maximize and adapt the mechanical refining technology for maximum efficiency within the process of biochemical conversion to sugar.

Keywords


Hardwood biomass; Biochemical conversion; Pretreatment; Mechanical refining; Enzymatic hydrolysis

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126