Preparation and Photocatalytic Activity of TiO2-Wrapped Cotton Nanofiber Composite Catalysts

Liruhua Zhang, Junmin Wan, Zhiwen Hu, Wenbin Jiang


A novel TiO2-wrapped nanofiber composite catalyst, which possessed a unique porous structure and mixed crystalline phase, was prepared by the combination of superficial sol–gel and post-calcination processes. By means of the superficial sol–gel process, TiO2 layers were deposited on the surface of each nanofiber-like cellulose fiber, and then the TiO2-wrapped nanofiber composite catalysts were calcined at different temperatures under a nitrogen atmosphere. With temperature increasing, the original cotton nanofiber composites were converted into porous carbon nanofiber catalysts wrapped by a TiO2 mixed crystalline phase, which was accompanied by a crystal transformation. The photocatalytic activity of the new catalysts was evaluated by the degradation of methylene blue (MB) under ultraviolet (UV) irradiation. The results demonstrated that the new catalysts had good photocatalytic ability, and the TNC-700 catalyst showed a superior photocatalytic ability compared with the other catalysts; the new catalysts had a unique porous structure, high specific surface area, and mixed crystalline phase. Additionally, the synergistic photocatalytic effect of the TiO2 and activated carbon nanofiber resulted in the efficient degradation of organic pollutants in water or air.


Titanium oxide (TiO2); Nanocrystalline cellulose; Nanofiber catalyst; Synergistic effect; Photocatalytic activity

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126