Studies on Mechanical Performance of Wood-Plastic Composites: Polystyrene-Eucalyptus globulus Labill

Miguel Ángel Flores-Hernández, José Guillermo Torres-Rendón, Rosa María Jiménez-Amezcua, María Guadalupe Lomelí-Ramírez, Francisco Javier Fuentes-Talavera, José Antonio Silva-Guzmán, Salvador García Enriquez

Abstract


The effects of size and concentration of wood particles on the properties of composites, obtained by extrusion, were evaluated based on polystyrene and wood particles from Eucalyptus globulus Labill. Wood-plastic ratios were 10:90, 30:70, and 50:50 (weight / weight), and wood particles were retained in 40, 50, 65, and 100-mesh sieves. The density, flow index, water absorption, and the mechanical properties were evaluated. Scanning electron microscopy revealed poor adhesion between the wood particles and the polystyrene. The size and content of wood particles were found to have a strong influence on the mechanical properties of the composite. The introduction of the wood particles induced a reduction of the Young’s modulus, ultimate strength and deflection, as well as an increment in the elongation at break. The impact resistance also increased with the size and concentration of the wood particles. Furthermore, with increasing content of wood particles, the value of the melt flow index decreased and the water absorption rose.

Keywords


Wood-plastic-composite; Eucalyptus flour; Mechanical properties; Extrusion

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126