Effect of Loess Treatment and Carbonization on the Hygric Performance of Medium-density Fiberboard

Min Lee, Jaehyuk Jang, Sangmin Lee, Sangbum Park

Abstract


The level of relative humidity is one of the key parameters in evaluating indoor air quality and comfort. In principle, humidity can be kept more uniform over time by use of materials that adsorb moisture from the air reversibly. This study was conducted to investigate the effect of loess treatment and carbonization on the hygric performance of medium-density fiberboard (MDF). The loess treatment was conducted with different sizes of loess particle prepared by a high-pressure homogenizer. After loess treatment on the surface of the MDF, it was carbonized at high temperature (600 °C). Loess is an abundant mineral high in Si content, which has high moisture absorption capacity, which remained after the carbonization process. The study also found that the loess treatment positively affected the hygric performance of carbonized MDF (c-MDF). The hygric performance of c-MDF almost doubled after the loess treatment compared with the non-treated c-MDF. However, the nano conversion of loess did not influence the hygric performance. Loess-treated carbonized MDF could be used as a humidity controller in buildings.

Keywords


Carbonization; Carbonized board; Loess; Hygric performance; Water absorption and desorption

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126