Plasticizer Combinations and Performance of Wood Flour–Poly(Lactic Acid) 3D Printing Filaments

Guangqiang Xie, Yanhua Zhang, Wenshu Lin

Abstract


Wood flour-poly(lactic acid) 3D printing filaments were prepared via a melt extrusion method. Poplar wood flour and poly(lactic acid) (PLA) were used as raw materials, and different combinations of glycerol and tributyl citrate (TBC) (4% glycerol, 2% glycerol + 2% TBC, 4% TBC) were used as plasticizers. A 3D printer was used to print the filaments into standard test specimens with dimensions of 150 mm × 10 mm × 0.2 mm at the printing temperature of 220 °C. The performance of wood flour-poly(lactic acid) 3D printing filaments in terms of their interfacial compatibility, mechanical properties, melt index (MI), water absorption, and heat stability was tested under different plasticizer combinations. The results showed that under the condition of same dosage of plasticizer, the order of MI for the 3D printed filaments from high to low was 4% glycerol > 2% glycerol + 2% TBC > 4% TBC, which indicated that glycerol was more favorable for the extrusion processing of the composite filaments. However, in terms of compatibility, mechanical properties, water absorption, and thermal stability, the 3D printing filaments with 4% TBC showed better performance compared with other groups.

Keywords


3D printing; Plasticizer; Polylactic acid; Wood plastic composites; Performance

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126