Multiple Characterization for Mechanistic Insights of Pb(II) Sorption onto Biochars Derived from Herbaceous Plant, Biosolid, and Livestock Waste

Zhuhong Ding, Hailu Wu, Xin Hu


Biochars are considered as promising sorbents for the removal of aqueous metal ions. The aim of this study was to explore the adsorption mechanisms through the integrated characterization of the pristine and Pb(II)-loaded biochars derived from herbaceous plant, biosolid, and livestock waste with different physicochemical properties. The biochar derived from livestock waste exhibited higher Pb sorption capacity than the others. Experimental data of sorption kinetics and isotherms were well fitted by kinetic models and Langmuir isotherm model, respectively. Comparisons of Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) between the pre- and post-adsorption biochars revealed the formation of Pb-carbonate, suggesting that the surface precipitation was the dominant adsorption mechanism. The combination of multiple characterizations and batch adsorption can make further exploration on the adsorption mechanism of Pb(II) adsorption onto the resultant biochars.


Physicochemical property; Batch sorption; X-ray photoelectron spectroscopy; Sorption mechanism

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126