Anti-bacterial and Anti-mold Efficiency of ZnO Nanoparticles Present in Melamine-laminated Surfaces of Particleboards

Erik Nosáľ, Ladislav Reinprecht


Lamination is one of the most widely used techniques for the surface treatment of wood-based composites such as particleboards, fiberboards, etc. It is usually carried out using décor papers impregnated with amino thermosetting resins, mostly melamine-formaldehyde, urea-formaldehyde, or their mixture. Conventional laminates with non-bioactive surfaces are not able to reduce or stop microbial growth when contaminated with organic substances. In this work, zinc oxide (ZnO) nanoparticles were applied into their surface structure to improve their anti-bacterial and anti-mold properties. Melamine-formaldehyde (MF) resin, for the white décor paper impregnation, was modified with ZnO in amounts of 0.1 wt.%, 0.3 wt.%, 0.6 wt.%, and 1 wt.% and pressed onto particleboards. The presence of ZnO in the melamine-laminated surfaces somewhat improved their resistance to the Gram-positive bacteria Staphylococcus aureus (by 20.7% or 9.5%). However, the improvement was considerable (~65% or 46.8%) against the Gram-negative bacteria Escherichia coli. The presence of ZnO in MF resins increased the anti-mold resistance of the intentionally contaminated laminated surfaces against the microscopic fungi Aspergillus niger and Penicillium brevicompactum at most by approximately 50%. ZnO nanoparticles had none or only a small negative effect on the resistance of the laminated surfaces towards aggressive chemicals and dry heat 180 °C, and their abrasion resistance decreased at most by approximately 17%.


Bacteria; Melamine laminate; Molds; ZnO nanoparticles

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126