Preparation and Performance Evaluation of PLA/Coir Fibre Biocomposites

Li Zhang, Zhihui Sun, Duoping Liang, Jing Lin, Wei Xiao

Abstract


Alkali-treated coir fibers were modified by silane coupling agent in a microwave oven. The use of microwave-assisted chemical treatments efficiently promoted the esterification reaction to improve the interfacial adhesion between the coir fibers and PLA matrix. Effects of the treated coir fiber content (1 wt.% to 7 wt.%) on the surface morphology and tensile, impact, and thermal properties of PLA/coir fiber biocomposites (AKWCF/PLAs) were evaluated. At a coir fiber content of 1%, the AKWCF/PLAs showed a remarkable increase of 28% in the percentage impact strength, while the tensile strength and breaking strength decreased with increasing coir fibre content. The thermal stability of the AKWCF/PLAs worsened and the degree of crystallinity increased with increasing fiber content. The decreased cold crystallization temperatures of AKWCF/PLAs further confirmed the role of coir fibers treated with the new combined method as an effective nucleating agent.

Keywords


PLA; Coir fibres; Mechanical properties; Thermal properties; Surface morphology

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126