Antibacterial Effects of Wood Structural Components and Extractives from Pinus sylvestris and Picea abies on Methicillin-Resistant Staphylococcus aureus and Escherichia coli O157:H7

Tiina Vainio-Kaila, Xue Zhang, Tuomas Hänninen, Aino Kyyhkynen, Leena-Sisko Johansson, Stefan Willför, Monika Österberg, Anja Siitonen, Lauri Rautkari

Abstract


Antibacterial properties of wood structural components and extractives were investigated against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli O157:H7 by placing bacterial inoculum on the model surfaces and incubating them for 2, 4, and 24 h. After incubation, the amount of viable bacteria on the surfaces was studied. The film coverage and thickness were evaluated with atomic-force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The extracts were analyzed with gas chromatography–mass spectrometry (GC-MS). The results showed that films fully covered the glass surfaces. The XPS results confirmed the analysis of GC-MS, which revealed more similarities between the extractives of pine heartwood and spruce heartwood than between pine heartwood and pine sapwood. Only the pine heartwood extract showed an antibacterial effect against E. coli O157:H7. In contrast, MRSA was susceptible to all of the extracts and milled wood lignin (MWL).

Keywords


Antibacterial wood; MRSA; E. coli; Wood structural components; Extractives; Scots pine; Norway spruce

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126