Enhanced Conversion of Furfuryl Alcohol to Alkyl Levulinates Catalyzed by Synergy of CrCl3 and H3PO4

Xueying Gao, Xin Yu, Ruili Tao, Lincai Peng


To enhance the yield of alkyl levulinates, a mixed-acid catalyst system consisting of CrCl3 and H3PO4 was investigated for the transformation of furfuryl alcohol (FA). The CrCl3−H3PO4 system exhibited a positive synergistic catalytic activity for the synthesis of alkyl levulinates, which was especially obvious for n-butyl levulinate (BL) synthesis. The strongest synergic effect of mixed-acid system for BL production was achieved at the CrCl3 molar ratio of 0.3 (based on total moles of CrCl3 and H3PO4). Furthermore, the mixed-acid systems consisting of Cr-salts combined with H3PO4 and its salts in catalyzing FA conversion to BL were evaluated, and the evolution process of FA to produce BL was explored in the presence of CrCl3−H3PO4, sole CrCl3, and sole H3PO4. A possible synergistic catalytic pathway of CrCl3 combined with H3PO4 was proposed. Finally, the key process variables were examined. Under optimal conditions, a high BL yield of 95% was achieved from 99% FA conversion catalyzed by the synergy of CrCl3 and H3PO4.


Biofuel; Furfuryl alcohol; Alkyl levulinates; Synergistic catalysis

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126