Static and Dynamic Properties of Sisal Fiber Polyester Composites – Effect of Interlaminar Fiber Orientation

Krishnasamy Senthilkumar, Irulappasamy Siva, Mohamed Thariq Hameed Sultan, Nagarajan Rajini, Suchart Siengchin, Mohamad Jawaid, Ahmad Hamdan

Abstract


The effect of fiber orientation was studied relative to the static and dynamic properties of sisal/polyester composites. Different composites were developed using the compression moulding technique with the aid of a specially designed mould. Composite laminates were formulated by stacking a number of fiber lamina with different orientations such as 90º/0º /90º, 0º /90º /0º, 90º /0º /0º /90º, 0º /45º /0º, 0º /90º /45º /45º /90º /0º, and 0º /45º /90º /90º /45º /0º. In general, the performance of static and dynamic characteristics was found to be significantly influenced by the effect of interlaminar fiber orientation. Experimental results exhibited a higher flexural strength of 68 MPa and an impact strength of 320 J/m in the case of 0º /90º /45º /45º /90º /0º oriented composites. Dynamic characteristics such as natural frequency and damping were found to be higher in the case of 0º /45º /0º and 0º /90º /0º, respectively. Morphological analysis was performed for understanding the interlaminar orientation and failure mechanisms between the fiber and the matrix.

Keywords


Fiber orientation;Sisal; Flexural; Impact; Free vibration;Compression moulding technique

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126