Isolation of Lignocellulose-derived Sugars, Co-fermentation of Lactic Acid Bacteria Strains, and Evaluation of L-lactic Acid Productivity

Hui Zou, Zhan-ying Liu, Yue Shi, Zhi-qiang Su, Jian-guo Liu

Abstract


High-productivity lactic acid bacteria (LAB) strains were screened and their capability to ferment lignocellulose-derived sugars into lactic acid were evaluated. Fifteen LAB strains were successfully isolated from cow dung, haystack, and sheep manure, respectively. Four relatively good strains were selected based on Gram stain, colony morphology, and catalase activity tests. The four strains and commercial inoculants (Lactobacillus pentosus and Enterococcus faecalis) were used to ferment cellobiose/ glucose/xylose to produce high-purity L-lactic acid. One of the strains (N4) presented the highest production of L-lactic acid after fermentation for 12 h and showed a L-lactic acid production of 15.1 g/L, 18.5 g/L, and 2.8 g/L and a productivity of 1.01 g∙L−1∙h−1, 3.68 g∙L−1∙h−1, and 0.47 g∙L−1∙h−1 by metabolizing cellobiose, glucose, and xylose, respectively. Through a phylogenetic tree analysis, strain N4 was identified as Enterococcus faecium and named Enterococcus faecium N4. Enterococcus faecium N4 has a great potential to ferment lignocellulose-derived sugars into L-lactic acid.

Keywords


Lignocellulose-derived sugars; L-lactic acid; Lactic acid bacteria; Microbial isolation; Phylogenetic tree

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126