Life Cycle Assessment of Cellulosic Ethanol and Biomethane Production from Forest Residues

Shaobo Liang, Hongmei Gu, Richard D. Bergman

Abstract


There is a strong need to manage low-value forest residues generated from the management practices associated with wildfire, pest, and disease control strategies to improve both the environmental and economic sustainability of forestlands. The conversion of this woody biomass into value-added products provides a great opportunity to benefit both the environment and economy. This study aimed to assess the environmental impacts of converting forest residues into two renewable fuels, cellulosic ethanol and biomethane, by different biochemical conversion pathways. The energy balances and environmental impacts, including acidification, eutrophication, global warming, and photochemical ozone formation, of the two biorefinery approaches were addressed. This work illustrated the advantages of converting forest residues into biomethane from energy and environmental perspectives. The tradeoff between the economic benefits and potential environmental issues need to be carefully considered.

Keywords


Anaerobic digestion; Cellulosic ethanol; Forest residue; Global warming; Life cycle assessment

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126