Activated Carbon Monolith Derived from Polymer and Fast Pyrolytic Char: Effect of Bio-Oil Phenol-Formaldehyde Resin

Lufei Li, Jianmin Chang, Liping Cai, Sheldon Q. Shi


Activated carbon monoliths (ACMs) were fabricated by H2O activation using powdered fast pyrolytic char (PFPC) as a raw material and bio-oil phenol-formaldehyde (BPF) resin as a binder. The effects of the ratio of BPF resin to PFPC on textural and chemical-surface properties of the ACMs were investigated using elemental analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and field-emission scanning electron microscopy (FE-SEM). The adsorption capacity and mechanical properties under different conditions were examined by N2 adsorption analysis and compression strength, respectively. The results indicated that the optimal ratio was 20 wt.% BPF resin binder. The compression strength of ACMs with a carbon content of 79.7 wt.% reached 3.74 MPa, while the BET surface area and total pore volume were 731.3 m2/g and 0.589 cm3/g, respectively. ACMs appeared to be mainly mesoporous with low graphitization and contained multiple functional groups such as alkyl, esters, ether, phenol, olefin, etc.


Bio-oil phenol-formaldehyde; Fast pyrolytic char; Activated carbon monoliths

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126