Improvement of the Physical Properties of Paper Sheet-lignophenol Composites Prepared Using a Facile Impregnation Technique

Lulu Zhu, Hanqing Liu, Shuang Qian, Hongqi Dai, Hao Ren


Lignophenol was separated from bamboo (Sinocalamus affinis) using a phase separation system. Different concentrations of a lignophenol-acetone solution were used to impregnate hardwood pulp fiber sheets (80 g/m2). The results showed that the tightness, tensile index, tear index, and burst index properties of sheets impregnated with a lignophenol acetone solution (80 g/L) increased 5.66%, 160.08%, 93.66%, and 140%, respectively, compared with sheets prepared without lignophenol. The lignophenol-hardwood pulp fiber composites were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and total reflectance Fourier transform infrared spectroscopy. The results indicated that lignophenol uniformly adhered to the pulp fibers but no chemical bonding occurred. Additionally, both virgin and recycled softwood pulp fiber sheets (80 g/m2) were tested using the same method. Although the strength of all composites increased after impregnation, the most obvious improvement was observed in the hardwood pulp-based composite. This simple method improved the physical strength and hydrophobicity of the composite sheets.


Lignophenol; Pulp fibers; Physical properties; Interaction

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126