Comparison of the Mechanical Characteristics of Fibers and Cell Walls from Moso Bamboo and Wood

Yanhui Huang, Benhua Fei


Bamboo and wood fibers are important raw materials for pulp and papermaking, as well as fiber-reinforced composites. The mechanical properties of single fibers and the cell walls of moso bamboo (Phyllostachys heterocycla), Masson pine (Pinus massoniana), and Chinese fir (Cunninghamia lanceolata) were tested via single fiber tensile test and nanoindentation; their fracture characteristics were also compared. The single fibers and cell walls of moso bamboo had superior mechanical properties compared with those of Masson pine and Chinese fir. The bamboo fibers exhibited high strength, high elasticity, and superior ductility. The results indicated that the differences between the mechanical properties of the fiber cells and cell walls of moso bamboo and those of wood were largely dependent upon cell shape and structure.


Moso bamboo; Single fiber; Cell walls; Nanoindentation; Mechanical properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126