Effects of the Corona Treatment of Rubber Tire Particles on the Properties of Particleboards

Alan Pereira Vilela, Danillo Wisky Silva, Lourival Marin Mendes, Maria Alice Martins, Lívia Elisabeth Vasconcellos de Siqueira Brandão, Rafael Farinassi Mendes


The aim of this study was to evaluate the effect of corona treatment and rubber tire particle substitution proportion on the properties of particleboard. Treatments consisted of replacing 10%, 20%, and 30% Pinus oocarpa with rubber tire particles, as well as a treatment without added rubber. Rubber particles were submitted to corona treatment. Panels were produced with a nominal density of 650 kg.m−3, a 7% urea-formaldehyde adhesive, a temperature of 200 °C, a specific pressure of 3.92 MPa, and pressing time of 8 min. Panels were evaluated to determine their physical properties, including water absorption and thickness swelling after 2 h and 24 h of water immersion (TS2h and TS24h), and for mechanical properties including internal bond strength (IB), modulus of rupture (MOR), and modulus of elasticity (MOE) in static bending. Using a 30% rubber tire particle substitution proportion significantly improved the TS24h and non-return rate in thickness (NRRT) of the panels. However, rubber addition significantly decreased the mechanical properties, and only panels with up to 10% rubber met the minimum requirements of the EN 312 (2003) standard for MOR, MOE, and IB in panels for internal use (including furniture).


Composites; Residue; Physical and mechanical properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126