Engineering Cell Wall-Degrading Enzymes into Growing Plants to Improve Lignocellulosic Ethanol Production

Shengdong Zhu, Maolin Yang, Fang Luo, Xiaojun Yang, Yongpin Xue

Abstract


The plant cell wall (PCW) represents the most abundant renewable biomass resource for lignocellulosic ethanol production. Economical and efficient degradation of PCW to fermentable sugars is an essential sub-process during lignocellulosic ethanol production. At present, the recalcitrance of PCW to various pretreatments and enzymatic hydrolysis makes the PCW degradation unacceptably expensive. Engineering cell wall-degrading enzymes into growing plants provides a promising solution to lower the PCW degradation cost and increase its degradation efficiency for lignocellulosic ethanol production. Avoiding damage by the expressed biomass-degrading enzymes to growing plants is the key to successful use of this method. Two modern biological technologies can be used to solve this problem. One is to engineer a thermoregulated intein-modified cell wall-degrading enzyme into growing plants. The other is to use the gene-timed expression technique. This editorial will give a brief discussion of opportunities and challenges of engineering cell wall-degrading enzymes into growing plants for improvement of lignocellulosic ethanol production.

Keywords


Cell wall-degrading enzyme; Plant cell wall; Lignocellulosic ethanol production

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126