Longitudinal Vibration Test for the Use of a Circular Truncated Cone as a Log Model of Japanese Cedar

Yoshitaka Kubojima, Yukari Matsumura, Youki Suzuki

Abstract


The appropriate diameter ratio of log top and butt ends when using a round bar (cylinder shape) as a log model for estimating the density and Young’s modulus of a log was investigated. Square timbers of Japanese cedar (Cryptomeria japonica D. Don) with a length of 1200 mm were used as specimens and were machined into circular truncated cones. A longitudinal vibration test was performed to obtain the Young’s moduli of the square timbers and the circular truncated cones. The Young’s moduli were calculated using the circular truncated cone model and the round bar model. The density and Young’s modulus calculated by the circular truncated cone model were similar to those of the square timbers. Hence, it is considered that the circular truncated cone was effective for estimating the densities and Young’s moduli of logs. The density and Young’s modulus calculated by the round bar model differed from those of the square timbers when the diameters of the top ends were small. However, it is considered that the round bar can be used as a log model for actual logs.

Keywords


Circular truncated cone; Log; Longitudinal vibration test; Round bar; Young’s modulus

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126