Preparation and Barrier Properties of Nanocellulose / Layered Double Hydroxide Composite Film

Mengmeng Wang, Hailong Li, Chao Du, Yun Liang, Mengru Liu


Cellulose nanofibrils (CNFs) were oxidized by the TEMPO oxidation system from bleached kraft eucalyptus pulp, and layered double hydroxides (LDHs) were prepared via the hydrothermal method. MgAl-CO3-LDHs/CNFs composite films with different LDH ratios were prepared via a filtering/evaporation technique that endowed the nanocomposites with barrier and strengthening properties. The MgAl-CO3-LDHs could uniformly disperse in the CNFs matrix with an improved reciprocal adhesion, and the surface result was smooth and continuous. The basic structure of the membrane did not change, but the thermodynamic properties and the water vapor barrier property improved. This composite membrane can be widely used in food, pharmaceutical, and chemical packaging industries as a gas-liquid barrier material.


Nanocellulose; Layered Double Hydroxides; Composite Film; Barrier Properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126