Quantitative Prediction of Agarotetrol in Chinese Eaglewood Using Near Infrared Spectroscopy

Zheyuan Ding, Li Tong, Haichao Li, Wei Lu, Wenbo Zhang, Xiaofan Bu

Abstract


To overcome the numerous disadvantages of existing testing technology, a novel, fast, nondestructive, and quantitative technology for quality evaluation of Chinese eaglewood (CE) based on near-infrared (NIR) technology was proposed in this study. The extractives of CE were qualitatively analyzed to determine the types of volatile compounds using gas chromatography-mass spectroscopy and were quantitatively determined using high performance liquid chromatography (HPLC). Agarotetrol was quantitatively determined by the HPLC analysis. The content was found to range widely from 0.016 to 0.104 mg/g. A quantitative prediction model aimed at quality control was proposed based on the qualitative and quantitative results coupled with a partial least squares regression. The coefficient of correlation and residual predictive deviation of the prediction model were determined to be 0.9697 and 5.77, respectively. The practical tests showed an average error of 0.000327%, which indicated that the method was able to provide a novel, quick, and effective quality evaluation of CE.

Keywords


Chinese eaglewood; Qualitative and quantitative analysis; NIRS; Prediction model; High-performance liquid chromatography (HPLC)

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126