Process Optimization of Large-Size Bamboo Bundle Laminated Veneer Lumber (BLVL) by Box-Behnken Design

Xiaoyi Niu, Jiuyin Pang, Hanzhong Cai, Shan Li, Lei Le, Junhua Wu


This work focuses on optimization of the laminated lap-joint lengthening technology that is used to produce large-size bamboo bundle laminated veneer lumber (BLVL). A three-factor Box-Behnken design was developed in which lap-joint length (x1), board density (x2), and thickness of lap veneer (x3) were the three factors. Multi-objective optimization of response surface model was used to obtain 17 optimum Pareto solutions by a genetic algorithms method. The mechanical properties of BLVL predicted using the model had a strong correlation with the experimental values (R2 = 0.925 for the elastic modulus (MOE), R2 = 0.972 for the modulus of rupture (MOR), R2 = 0.973 for the shearing strength (SS)). The interaction of the x1 and x3 factors had a significant effect on MOE. The MOR and shearing SS were significantly influenced by the interaction of x2 and x3 factors. The optimum conditions for maximizing the mechanical properties of BLVL lap-joint lengthening process were established at x1 = 16.10 mm, x2 = 1.01 g/cm3, and x3 = 7.00 mm. A large-size of BLVL with a length of 14.1 m was produced with the above conditions. Strong mechanical properties and dimensional stability were observed.


Bamboo bundles; Lap-joint; Laminated veneer lumber (LVL); Box-Behnken design; Response surface methodology; Mechanical properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126