Smart Hydrophobic-Hydrophilic Self-Switching Cellulosic Materials Synthesized by Regioselective Functionalization

Meiyan Lin, Kunfeng Xia, Pengbo Lu, Yanghao Ou, Lingfeng Su, Detao Liu


Smart hydrophobic-hydrophilic self-switching cellulosic materials were synthesized by regioselective functionalization of cellulose in green Ionic Liquids (ILs). The thermal analysis indicated that the introduction of a macromolecular structure including a trityl or heptafluorobutyric group onto the cellulose chain increased the thermal stability of the cellulose derivatives. Wetting contact angle of the surface decreased from 103° to 73° as the holding time increased at ambient conditions (19.8 °C, 65%). After wetting, the surface free energy increased from 11.03 to 34.09 J·m, of which the polarity component increased from 60.92% to 94.19%. The XPS analysis indicated that the content of oleophobic-hydrophobic CF3-CF2-CF2-CO- groups at the exposed surface decreased after wetting, while the hydrophilic HOOC- groups increased, which verified the self-switching process between the hydrophobic and hydrophilic properties within the cellulosic materials. The self-switching characteristic means that the biodegradable cellulosic materials have suitable selectivities for high-impact applications in various fields.


Self-switchable process; Ionic liquids; Cellulose; Trityl group; Hydrophobic-hydrophilic process

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126