Grain Sorghum Drying Kinetics Under Isothermal Conditions Using Thermogravimetric Analyzer

Sammy Sadaka, Griffiths Atungulu


This research aimed to determine the isothermal drying kinetic parameters of grain sorghum using a thermogravimetric analyzer (TGA). The kernels were placed in the TGA under isothermal drying conditions, i.e., 40, 50, 60, 70, 80, 90, and 100 °C. Changes in the sample weight were determined from the TGA and the data were used to determine the moisture ratio and the derivative of the weight loss curves. The moisture ratio data obtained experimentally were fitted to four well-known models, namely Page, Newton, Logarithmic, and Henderson, to determine the best-fit model for the experimental data. The goodness of fit criteria was used to determine the best-fit model. An increased drying temperature from 40 °C to 100 °C accelerated the drying process and decreased the moisture ratio from 0.6091 to 0.2909, after 1 h. The Page model was the best fit for 71.4% of the drying curves, whereas the Logarithmic and Henderson models were the best fit for 28.6% of the studied cases. Increasing the drying temperature from 40 °C to 100 °C increased the effective moisture diffusivity from 0.96 × 10−8 m2/s to 1.73 × 10−8 m2/s. The drying activation energy value reached 9.4 kJ/mol under isothermal drying conditions.


Grain sorghum; Moisture content; Drying kinetics; Moisture diffusivity; Activation energy

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126