Physicochemical and Mechanical Properties of Polypropylene-cellulose Nanocrystal Nanocomposites: Effects of Manufacturing Process and Chemical Grafting

Jae-Gyoung Gwon, Hye-Jung Cho, Danbee Lee, Don-Ha Choi, Soo Lee, Qinglin Wu, Sun-Young Lee


Chemical modifications have been widely adopted for improving the dispersibility of cellulose nanocrystals (CNCs) in nonpolar matrixes. Nonetheless, an engineering design for improving the CNC structure is still challenging due to the differences in the dispersion level of CNCs depending on the modification strategies in a desired matrix. The current study was conducted to find an appropriate functionalization technique for CNCs and an effective manufacturing process for CNC-polypropylene (PP) nanocomposites. The surface structures of CNCs were successfully changed using toluene diisocyanate (TDI) and maleic anhydride grafted PP (MAPP). The tensile properties and thermal stability of the nanocomposites with MAPP grafted CNCs were higher than those of pristine and TDI grafted CNC systems. A melt-extrusion process with pre-dispersion processing exhibited more positive effects on the properties of the nanocomposites in comparison to the systems without pre-dispersion. Scanning and transmission electron microscopes also provided clear evidence of the dispersion levels of unmodified and modified CNCs in the PP matrix.


Cellulose nanocrystals; Nanocomposites; Polypropylene; Surface modification; Dispersibility

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126