Isolation of Lignin from Masson Pine by Liquid-Liquid Extraction Based on Complete Dissolution in NaOH Aqueous Solution

Wenjuan Wu, Bo Jiang, Lingfeng Yang, Yongcan Jin


A method for lignin isolation from softwood based on complete dissolution in NaOH aqueous solution and liquid-liquid extraction was introduced. The structural features of milled alkali-soluble lignin (MAL) were comparatively analyzed with those of classical milled wood lignin (MWL) by means of alkaline nitrobenzene oxidation (NBO) and molecular weight, as well as Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectra analyses. The results showed that the yield of crude MAL (34.2%) was about twice as much as that of MWL (16.4%). The NBO product yields of MWL and MAL were quite similar. The weight-average molecular weight of MAL (10,400 g mol-1) was much higher than for MWL (6,970 g mol-1). Both MWL and MAL displayed similar FTIR, UV, 1H NMR, and 1H-13C HSQC NMR spectra. The total OH content of MAL (4.48 mmol g-1) was higher than that of MWL (3.89 mmol g-1). Compared with MWL, MAL showed similar structural characteristics but better isolation yield and higher molecular weight.


Ball-milled alkali-dissolved lignin (MAL); Liquid-liquid extraction; Masson pine; NaOH aqueous solution; Structural characteristics

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126